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The mass spectral fragmentation of 4-isoxazolyl-1,4-dihydropyridines has been examined with the aid of
linked metastable scanning. Three prominent pathways involve (i) O-N bond cleavage of the isoxazole follow-
ed by the loss of R*CN, (ii) loss of carboalkoxy from the 3- and/or 5- position of the dihydropyridine and, (iii)

loss of the 4-isoxazolyl-substituent.
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4-Aryl-dihydropyridines are of interest as antagonists of
trans-membranal calcium influx [1]. Carbocyclic aryl
groups, however, are generally not able to act as a reactive
site for covalent affinity labeling. We are interested in a

followed by fragmentation. Information is lacking in the
literature, however, on the mass spectral fragmentation of
compounds containing isoxazoles in the presence of other
heterocyclic nuclei [11]. We have prepared a series of

system which retains enough structural similarity to be an
effective calcium entry antagonist, which also contains a
labile functional group capable of acting as a covalent af-
finity label. Ideally, a covalent affinity label can be trans-
formed into a reactive intermediate after binding the ac-
tive site, thus providing structural information concerning
the active site. A common mode of triggering this transfor-
mation is by means of photolysis, and photochemistry is
also often correlated to mass spectral fragmentation pat-
terns [2].

Recently we have reported the synthesis of a 4-isoxa-
zolyl-1,4-dihydropyridine [3a] and subsequently have
found that this class of compounds is active as calcium
channel blockers [3b]. We wish to present here mass spec-
tral evidence that the oxygen-nitrogen bond is labile, that
this fragmentation is accompanied by metastable ions,
and therefore, the isoxazolyl moiety has potential as a
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photo affinity label. e d e
The mass spectrometry of isoxazoles [4-10] is usually
characterized by cleavage of the oxygen-nitrogen bond G=CO,R}

Table 1

4-Isoxazolyl-1,4-dihydropyridines

Entry R! R? R? R+ mp [a] Formula mw Anal. Found (Calcd.)
C H
1 Me Me Et H 151-153 C,H..N,0, 348 ref [3]
Me Et Et H 152-154 C,,H,;N,0, 362 63.27 6.98
(62.96) (7.23)
3 Me Ph Et H 200-202 C,.H,.N,0, 410 67.15 6.44
(67.30) (6.38)
4 Me Me Et D 151-153 C,H;,DN,0, 349 [b]
5 Et Me Et H 142-144 C, H,,N,0, 362 62.76 7.16
(62.96) (7.23)
[ Me Me Me H 239-241 [c] C,.H,; N0, 320 60.36 6.47

(59.99) (6.29)

[a] Melting points are corrected, unless otherwise noted. [b] See experimental. [c] Uncorrected.
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dihydropyridines (Table 1) and examined their fragmenta-
tion pathways and also report herein on linked metastable
scanning [12] studies.

Results and Discussion.

The mass spectrum of 1, as well as linked metastable
scans, are shown in Figure 1. Compound 1 shows a respec-
table molecular ion in the EI spectrum (22% relative in-
tensity) (Figure 1, spectrum i) and a base peak at m/z 234.
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In order to elucidate the fragmentation pathway constant
neutral loss, daughter ion and precursor ion linked
metastable scans were examined. Linked scanning in-
dicates that prominent ions arising from the M* (Figure 1,
spectrum ii) occur at 333 (M-15); 319 (M-29); 275 (M-73)
and 234 (M-114). Constant loss scans were examined for
loss of -CO,Et (73) and CH;-CN (41). The constant loss 73
linked scan (Figure 1, spectrum iii) gave rise to ions at 348,
307, 275 and 247. The constant loss 41 linked scan gave
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Figure 1. Mass Spectra, including linked metastable scanning study for 1.

(i) Normal Scan. (ii) Daughter ion (B/E) scan of M+, m/Z 348. (iii) Constant neutral loss (B/E +/1-E) scan of m/Z 73. (iv) Precursor (B¥E) scan of

m/Z 234.
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Figure 2. Mass spectrum for 2
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rise to ions of 348, 277, 274, 246, 228, 202 and 189. A
precursor ion scan (Figure 1, spectrum iv) for ions which
give rise to m/z 234 gave ions at 348 and 307. The results
are consistent with cleavage of the oxygen nitrogen bond
of the isoxazole 1 to give (a) which then undergoes loss of
acetonitrile (R? - CN) to produce ion (b), m/z 307. This ion
undergoes rapid loss of carboethoxy to produce the base
ion, m/z 234. Direct loss of carboethoxy is evidenced by
the ion (d) at m/z 275, in spectrum i.

In addition an ion is observed at m/z 252, this ion pro-
bably arises from loss of the isoxazolyl moiety to give ion
(e). An ion of this type is commonly observed in the mass
spectra of 1,4-dihydropyridines [15-17]. The mass spec-
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trum of 2 shows similar features (Figure 2), a significant
molecular ion and ions at m/z 234 (base ion) and 252.

The compound 3 differs only in the substitution at the
R? position. The base ion of this compound is again
observed at m/z 234 (Figure 3, i), thus the R? group is lost,
most likely as benzonitrile. In addition the 252 ion is
observed, as well as prominent M-41 (m/z 381) and M-73
(m/z 337). Linked scanning presents strong evidence that
the compound 3 fragments by the analogous pathway. The
base peak at m/z 234 arises from the molecular ion (Figure
3, spectrum ii), the ion of m/z 337 undergoes constant
neutral loss of 103 to 234 (Figure 3, spectrum iii) and the
complementary process, loss of 73 from m/z 307, is observ-
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Figure 3. Mass spectra, including linked matastable scanning study for 3.

(i) Normal scan. (ii) Daughter ion scan of M+, m/Z 410. (iii) Constant ne
(v) Precursor scan of m/Z 234.
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Figure 4. Mass spectrum for 4.
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Figure 5. Mass spectrum for 5.
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Figure 6. Mass spectra, including linked metastable scanning study for 6.

(i) Normal scan. (ii) Daughter ion scan of M+, m/Z 320. (iii) Constant neutral loss scan of m/Z 41. (iv) Constant neutral loss scan of m/Z 59.

(v) Precursor scan of m/Z 220.

ed (Figure 3, spectrum iv). Thus the analogous fragmenta-
tion of 3 to (d) is indicated. Deuteration at the C-4 position
of the dihydropyridine (Figure 4, mass spectrum of 4)
gives a base peak of m/z 276; however, the 235 and 253
ions are still quite prominent. For compound 5 (Figure 5)
the base peak is observed at m/z 248. This provides further
evidence tht M-R*CN contributes to the base ion and that
the R* group is retained in the ion. To elucidate the carbo-
alkoxy fragmentation pathway the fragmentation of 6 was
examined (Figure 6). A molecular ion is observed (m/z 320)
and the base peak is observed at m/z 220. Prominent ions
are observed at m/z 305, 289, 261 and 224. Thus loss of a

single carboalkoxy to give the base ion is indicated.

Conclusion.

The mass spectral fragmentation of isoxazolyldihydro-
pyridines 1-6 is characterized by cleavage of the isoxazolyl
O-N bond followed by an unusual loss of the R?CN moiety.
This fragmentation is accompanied by metastable ions;
therefore, this transformation may be plausible as a
photochemical reaction. Attempts to reduce this to prac-
tice as a synthetic tactic are now in progress.

EXPERIMENTAL

Mass spectra were obtained on a VG Micromass 70/70HS mass spec-
trometer with an 11/250 data system. Constant neutral linked magnetic
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field - electric sector scanning was performed using the procedure
described by Haddon {12,13].

The isoxazolyldihydropyridines 1-6 were prepared as previously
described [3,14). Purity was assessed by 'H, **C nmr, thin layer chroma-
tography and combustion analysis. Combustion analysis for 1 has been
reported, mp 151-153 (corrected) (lit [3] mp 155-157, uncorrected).

Compound 4 was prepared from 3,5-dimethylisoxazolecarboxylic acid
in three steps. The acid was first reduced with lithium aluminum
deuteride (THF, 0°) to give 3,5-dimethylisoxazole-4-d,-carbinol (77%
yield); ge-ms: m/z 129 (27% relative intensity), 111 (14), 82 (22), 73 (20),
43 (100). Oxidation of the d;-alcohol to 3,5-dimethylisoxazole-4-d;-
carbaldehyde was performed according to Swern [18]. The product was
obtained as an oil in 83% yield; '"H nmr (deuteriochloroform): no detec-
table signal at 9.8 (-CDO), 2.6 (s, 3H), 2.4 (s, 3H); ms: m/Z 126 (48%
relative intensity), 111 (15), 84 (14), 83 (40), 82 (44), 70 (9), 55 (15), 43
(100). The d,-aldehyde was subjected to the Hantzsch synthesis, as
previously described [3], to give d,-dihydropyridine (4).

Compound 6 had 'H nmr (deuteriochloroform): 6.0 (br s, 1H), 4.9 (s,
1H), 3.6 (s, 6H), 2.4 (s, 9H), 2.2 (s, 3H); *C nmr (deuteriochloroform):
167.6, 166.17, 159.62, 144.06, 119.69, 100.8, 50.86, 29.06, 18.98, 10.95,
9.93.
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